Nitrobenzofurazans and Nitro-2,1,3-benzothiadiazoles: Unexpected Reactivity towards Nucleophilic Attack

By J. J. K. BOULTON* and P. KIRBY

(Shell Research Limited, Woodstock Agricultural Research Centre, Sittingbourne, Kent)

Summary The reactivity of 4-chlorobenzofurazan towards methoxide ion is about the same as that of *o*-nitrochlorobenzene, but the reactivity of 4-chloro-5-nitrobenzofurazan towards the same reagent exceeds that of picryl chloride: other examples of unexpectedly high reactivity of related compounds towards nucleophilic reagents are given.

4-HYDROXYBENZOFURAZAN (I) has a pK_a of 6.83, suggesting that the annellated furazan ring is slightly more electronwithdrawing than an *o*-nitro-group.¹ (pK_a of *o*-nitrophenol = 7.21.²) In accord with this expectation, the rate of reaction of 4-chlorobenzofurazan with methoxide ion in methanol ("methoxydechlorination" in Bunnett's nomenclature³) is very similar to that of *o*-nitrochlorobenzene.⁴ It is therefore not unreasonable to suppose that the reactivity of 4-substituted 5-nitrobenzofurazans might be similar to, that of the corresponding 1-substituted 2,6-dinitrobenzenes. 4-chloro-5-nitrobenzofurazan in fact exceeds that of 2,4,6trinitrochlorobenzene (rate constant for methoxydechlorination at 0° in methanol = $6.7 \times 10^{-1} \, \text{l mole}^{-1} \, \text{s}^{-1}$)⁵.

5-Chloro-4-nitrobenzofurazan was found to be even more reactive towards attack by methoxide in methanol than the 4-chloro-5-nitro-isomer; k (0°) being equal to 18.61 mole⁻¹ s⁻¹. Dal Monte and Sandri⁴ have found 5-chlorobenzofurazan to be more rapidly methoxydechlorinated (*ca.* 5×) than the 4-chloro-isomer.

Similar high reactivity towards attack by methoxide was shown by 4-methoxy-5-nitrobenzofurazan (II). When a solution of (II) in methanol (λ_{max} 357 nm, ϵ 3·3 × 10³) was treated with an excess of KOMe in methanol, a new spectrum appeared with λ_{max} 369 nm, ϵ 1·5 × 10⁴. In order to investigate the nature of the reaction, a solution of (II) in methanol was treated with an equimolar amount of KOMe in methanol, and evaporated to low bulk. Orange crystals were deposited; these were washed with dry ether, and

The equilibrium constant for the reaction:

(II) + KOMe \Rightarrow (III) (25°, MeOH)

was found to be $5 \cdot 1 \times 10^3 \, \text{l}$ mole⁻¹. Hammett extrapolation of the data of Fendler, Fendler, and Griffin⁶ suggest that for the corresponding equilibrium (Scheme) K is ca. $10^{-5} \, \text{l}$ mole⁻¹.

We were therefore surprised to find that the rate constant for methoxydechlorination (0°, methanol) of 4-chloro-5nitrobenzofurazan was 2.75 l mole⁻¹ s⁻¹, the rate constant for the corresponding reaction of 2,6-dinitrochlorobenzene⁵ being only $5 \cdot 2 \times 10^{-5}$ l mole⁻¹ s⁻¹. The reactivity of

The data of Dal Monte and Sandri^{1,4} show that an annellated 2,1,3-thiadiazole ring is less electron-withdrawing than a nitro-group. In view of the observations reported above, it was of interest to examine the reactivity of 4chloro-5-nitrobenzothiadiazole (IV) towards methoxide in methanol. The rate constant for methoxydechlorination

- ¹ D. Dal Monte and E. Sandri, Ann. Chim. (Italy), 1964, 54, 486.
 ² A. I. Biggs, Trans. Faraday Soc., 1956, 52, 35.
 ³ J. F. Bunnett, Quart. Rev., 1958, 12, 1.
 ⁴ D. Dal Monte and E. Sandri, Ann. Chim. (Italy), 1963, 53, 1697.
 ⁵ J. J. K. Boulton and F. Shipway, submitted for publication to J. Chem. Soc. (B).
 ⁶ J. H. Fendler, E. J. Fendler, and C. E. Griffin, J. Org. Chem., 1969, 34, 689.

at 0° was $3\cdot 1 \times 10^{-3}$ l mole⁻¹ s⁻¹ (cf. value of $5\cdot 2 \times 10^{-5}$ l mole⁻¹ s⁻¹ reported for 2,6-dinitrochlorobenzene above). The 5-chloro-4-nitro-isomer showed similar reactivity: k (0°) 2.44 × 10⁻³ l mole⁻¹ s⁻¹.

(Received, October 14th, 1970; Com. 1771.)